8,476 research outputs found

    Shear localization as a mesoscopic stress-relaxation mechanism in fused silica glass at high strain rates

    Get PDF
    Molecular dynamics (MD) simulations of fused silica glass deforming in pressure-shear, while revealing useful insights into processes unfolding at the atomic level, fail spectacularly in that they grossly overestimate the magnitude of the stresses relative to those observed, e. g., in plate-impact experiments. We interpret this gap as evidence of relaxation mechanisms that operate at mesoscopic lengthscales and which, therefore, are not taken into account in atomic-level calculations. We specifically hypothesize that the dominant mesoscopic relaxation mechanism is shear banding. We evaluate this hypothesis by first generating MD data over the relevant range of temperature and strain rate and then carrying out continuum shear-banding calculations in a plate-impact configuration using a critical-state plasticity model fitted to the MD data. The main outcome of the analysis is a knock-down factor due to shear banding that effectively brings the predicted level of stress into alignment with experimental observation, thus resolving the predictive gap of MD calculations

    Constraining the neutron star equation of state using XMM-Newton

    Full text link
    We have identified three possible ways in which future XMM-Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X-ray transient CenX-4 in quiescence one can use the RGS spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X-ray spectral fitting of the pn and MOS spectra and allows us to investigate whether the variability observed in the quiescent X-ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in N_H. This will test whether the soft thermal spectral component can indeed be due to the hot thermal glow of the neutron star. Potentially such an observation could also reveal redshifted spectral lines from the neutron star surface. Second, XMM-Newton observations of radius expansion type I X-ray bursts might reveal redshifted absorption lines from the surface of the neutron star. Third, XMM-Newton observations of eclipsing quiescent low-mass X-ray binaries provide the eclipse duration. With this the system inclination can be determined accurately. The inclination determined from the X-ray eclipse duration in quiescence, the rotational velocity of the companion star and the semi-amplitude of the radial velocity curve determined through optical spectroscopy, yield the neutron star mass.Comment: 4 pages, 1 figure, proceedings of the XMM-Newton workshop, June 2007, accepted for publication in A

    Dependable Distributed Computing for the International Telecommunication Union Regional Radio Conference RRC06

    Full text link
    The International Telecommunication Union (ITU) Regional Radio Conference (RRC06) established in 2006 a new frequency plan for the introduction of digital broadcasting in European, African, Arab, CIS countries and Iran. The preparation of the plan involved complex calculations under short deadline and required dependable and efficient computing capability. The ITU designed and deployed in-situ a dedicated PC farm, in parallel to the European Organization for Nuclear Research (CERN) which provided and supported a system based on the EGEE Grid. The planning cycle at the RRC06 required a periodic execution in the order of 200,000 short jobs, using several hundreds of CPU hours, in a period of less than 12 hours. The nature of the problem required dynamic workload-balancing and low-latency access to the computing resources. We present the strategy and key technical choices that delivered a reliable service to the RRC06

    Detection of a 1258 Hz high-amplitude kilohertz quasi-periodic oscillation in the ultra-compact X-ray binary 1A 1246-588

    Get PDF
    We have observed the ultra-compact low-mass X-ray binary (LMXB) 1A 1246-588 with the Rossi X-ray Timing Explorer (RXTE). In this manuscript we report the discovery of a kilohertz quasi-periodic oscillation (QPO) in 1A 1246-588. The kilohertz QPO was only detected when the source was in a soft high-flux state reminiscent of the lower banana branch in atoll sources. Only one kilohertz QPO peak is detected at a relatively high frequency of 1258+-2 Hz and at a single trial significance of more than 7 sigma. Kilohertz QPOs with a higher frequency have only been found on two occasions in 4U 0614+09. Furthermore, the frequency is higher than that found for the lower kilohertz QPO in any source, strongly suggesting that the QPO is the upper of the kilohertz QPO pair often found in LMXBs. The full-width at half maximum is 25+-4 Hz, making the coherence the highest found for an upper kilohertz QPO. From a distance estimate of ~6 kpc from a radius expansion burst we derive that 1A 1246-588 is at a persistent flux of ~0.2-0.3 per cent of the Eddington flux, hence 1A 1246-588 is one of the weakest LMXBs for which a kilohertz QPO has been detected. The root-mean-square (rms) amplitude in the 5-60 keV band is 27+-3 per cent, this is the highest for any kilohertz QPO source so far, in line with the general anti-correlation between source luminosity and rms amplitude of the kilohertz QPO peak identified before. Using the X-ray spectral information we produce a colour-colour diagram. The source behaviour in this diagram provides further evidence for the atoll nature of the source.Comment: 4 pages, 3 figures, accepted for publication in MNRA

    Planetary nebulae and stellar kinematics in the flattened elliptical galaxy NGC 1344

    Full text link
    We present photometric and kinematic information obtained by measuring 197 planetary nebulae (PNs) discovered in the flattened Fornax elliptical galaxy NGC 1344 (also known as NGC 1340) with an on-band, off-band, grism + on-band filter technique. We build the PN luminosity function (PNLF) and use it to derive a distance modulus m-M=31.4, slightly smaller than, but in good agreement with, the surface brightness fluctuation distance. The PNLF also provides an estimate of the specific PN formation rate: 6x10^-12 PNs per year per solar luminosity. Combining the positional information from the on-band image with PN positions measured on the grism + on-band image, we can measure the radial velocities of 195 PNs, some of them distant more than 3 effective radii from the center of NGC 1344. We complement this data set with stellar kinematics derived from integrated spectra along the major and minor axes, and parallel to the major axis of NGC 1344. The line-of-sight velocity dispersion profile indicates the presence of a dark matter halo around this galaxy.Comment: 45 pages, 18 figures, accepted for publication in Ap
    • 

    corecore